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1. Introduction

Let a and m be integers, m > 1, and gcd(a,m)=1. We say that a is a primitive
root modulo m if (Z/mZ)∗ is cyclic and a is a generator of (Z/mZ)∗. The Primitive
Root Theorem characterizes those moduli m such that (Z/mZ)∗ is cyclic. Of course,
if p is a prime, then (Z/pZ)∗ is cyclic, and so there always exists a primitive root
modulo p. In this paper we present some elementary results about primes p such
that 2 is a primitive root modulo p.

In what follows we will make use of an equivalent though more convenient defini-
tion for a primitive root modulo m. As before, let a,m ∈ Z, m > 1, gcd(a,m) = 1.
Let ordm(a) (the order of a modulo m) be the smallest positive integer k such that
ak ≡ 1 (mod m). Such an integer k always exists, since by Euler’s Theorem, we
know that aφ(m) ≡ 1 (mod m), where φ(n) denotes the Euler phi-function. Then
a is a primitive root modulo m if and only if ordm(a) = φ(m). If p is prime, then
φ(p) = p − 1, so a is a primitive root modulo p if and only if ordp(a) = p − 1.
We now collect some elementary classical results to be used later. Recall that
ordm(a) | φ(m), so in particular ordp(2) | p − 1 when p is prime (note that
ordp(2) 6= 1). These two properties of the Legendre Symbol will also be used:
If p is an odd prime, then

(1)

(
2

p

)
≡ 2(p−1)/2 (mod p)

(2)

(
2

p

)
= (−1)(p

2−1)/8 =

{
1, if p ≡ 1, 7 (mod 8)
−1, if p ≡ 3, 5 (mod 8)

2. Elementary Results

Proposition 1. Let p be an odd prime. If 2 is a primitive root modulo p then 2 is
a quadratic nonresidue modulo p.

Proof. Since 2 is a primitive root modulo p, ordp(2) = p−1. Assume p is a quadratic

residue modulo p. Then by (1), 2(p−1)/2 ≡ 1 (mod p). But then

ordp(2) ≤ p− 1

2
< p− 1 = ordp(2),

a contradiction. So 2 is a quadratic nonresidue modulo p. �

Proposition 2. Let p be an odd prime. If 2 is a primitive root modulo p, then
p ≡ 3, 5 (mod 8).
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Proof. By (2), 2 is a quadratic nonresidue modulo an odd prime p if and only if
p ≡ 3, 5 (mod 8). This fact together with Proposition 1 gives the desired result. �

The converse of Proposition 2 does not hold in general. For example, it may be
verified that 2 is not a primitive root modulo 43.

A Fermat prime is defined to be a prime of the form 22
n

+ 1. A Mersenne prime
is defined to be a prime of the form 2p−1 with p prime. Fermat primes greater than
5 are congruent to 1 (mod 8), and Mersenne primes greater than 3 are congruent to
7 (mod 8). Proposition 2 tells us that 2 is not a primitive root modulo p whenever
p is a Fermat prime greater than 5 and whenever p is a Mersenne prime greater
than 3.

Proposition 3. Let p be an odd prime. If 8 | p− 1 then 2 is not a primitive root
modulo p.

Proof. If 8 | p−1 then p ≡ 1 (mod 8), and so by Proposition 2, 2 is not a primitive
root modulo p. �

If p is an odd prime, then p− 1 is even, and 2 | p− 1. Proposition 3 tells us that
if 2 is a primitive root modulo p, 2 or 4 appear in the prime factorization of p− 1,
but no higher power of 2 can appear.

Proposition 4. If p is a prime of the form p = 2q+ 1 for some odd prime q, then
2 is a primitive root modulo p if and only if q ≡ 1, 5 (mod 8).

Proof. If 2 is a primitive root modulo p, then by Proposition 2, p ≡ 3, 5 (mod 8).
We see at once that we must have q ≡ 1, 5 (mod 8). Conversely, let q ≡ 1, 5
(mod 8). Now ordp(2) is either q or 2q (it cannot be 2, since p ≥ 7). Assume

ordp(2) = q. Then 2q ≡ 1 (mod p), and so by (1),
(

2
p

)
= 1. But by (2), this means

that p ≡ 1, 7 (mod 8). But since q ≡ 1, 5 (mod 8), we must have p ≡ 3 (mod 8), a
contradiction. So, ordp(2) = 2q, and 2 is a primitive root modulo p. �

Proposition 5. If p is a prime of the form p = 4q+ 1 for some odd prime q, then
2 is a primitive root modulo p.

Proof. The smallest prime of this form is p = 13, and it can be verified directly that
2 is a primitive root modulo 13. For every other prime of this form, ordp(2) is one
of q, 2q, or 4q. The cases ordp(2) = q and ordp(2) = 2q both imply that 22q ≡ 1

(mod p). Then by (1),
(

2
p

)
= 1, and so by (2), we must have p ≡ 1, 7 (mod 8).

But since p is of the given form, p ≡ 5 (mod 8), a contradiction. So, ordp(2) = 4q,
and 2 is a primitive root modulo p. �

Proposition 6. If p is a prime of the form p = 4qk + 1 for some odd prime q and
some positive integer k, then ordp(2) is one of

{
4q, 4q2, . . . , 4qk

}
.

Proof. As before, 13 is the smallest prime of this form, and ord13(2) = 12, so the
statement holds. For all other primes of this form, ordp(2) is one of

{2q, 4q, 2q2, 4q2, . . . , 2qk, 4qk}.

Assume ordp(2) = 2q` for some 1 ≤ ` ≤ k. Then 22q
` ≡ 1 (mod p). Therefore,

22q
k ≡ 1 (mod p), and so

(
2
p

)
= 1 by (1). By (2), p ≡ 1, 7 (mod 8). But since
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p is of the given form, p ≡ 5 (mod 8), a contradiction. So, ordp(2) 6= 2q` for any
1 ≤ ` ≤ k, and therefore ordp(2) is one of {4q, 4q2, . . . , 4qk}. �
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