PRIMES p SUCH THAT 2 IS A PRIMITIVE ROOT MODULO p

RAYMOND N. FULLER

1. Introduction

Let a and m be integers, $m>1$, and $\operatorname{gcd}(a, m)=1$. We say that a is a primitive root modulo m if $(\mathbb{Z} / m \mathbb{Z})^{*}$ is cyclic and a is a generator of $(\mathbb{Z} / m \mathbb{Z})^{*}$. The Primitive Root Theorem characterizes those moduli m such that $(\mathbb{Z} / m \mathbb{Z})^{*}$ is cyclic. Of course, if p is a prime, then $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic, and so there always exists a primitive root modulo p. In this paper we present some elementary results about primes p such that 2 is a primitive root modulo p.

In what follows we will make use of an equivalent though more convenient definition for a primitive root modulo m. As before, let $a, m \in \mathbb{Z}, m>1, \operatorname{gcd}(a, m)=1$. Let $\operatorname{ord}_{m}(a)$ (the order of a modulo m) be the smallest positive integer k such that $a^{k} \equiv 1(\bmod m)$. Such an integer k always exists, since by Euler's Theorem, we know that $a^{\phi(m)} \equiv 1(\bmod m)$, where $\phi(n)$ denotes the Euler phi-function. Then a is a primitive root modulo m if and only if $\operatorname{ord}_{m}(a)=\phi(m)$. If p is prime, then $\phi(p)=p-1$, so a is a primitive root modulo p if and only if $\operatorname{ord}_{p}(a)=p-1$. We now collect some elementary classical results to be used later. Recall that $\operatorname{ord}_{m}(a) \mid \phi(m)$, so in particular $\operatorname{ord}_{p}(2) \mid p-1$ when p is prime (note that $\left.\operatorname{ord}_{p}(2) \neq 1\right)$. These two properties of the Legendre Symbol will also be used: If p is an odd prime, then

$$
\left.\begin{array}{c}
\left(\frac{2}{p}\right) \equiv 2^{(p-1) / 2} \quad(\bmod p) \\
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=\left\{\begin{array}{rr}
1, & \text { if } p \equiv 1,7 \\
-1, & \text { if } p \equiv 3,5
\end{array}(\bmod 8)\right.
\end{array}\right) . \begin{aligned}
& \bmod 8) \tag{2}
\end{aligned}
$$

2. Elementary Results

Proposition 1. Let p be an odd prime. If 2 is a primitive root modulo p then 2 is a quadratic nonresidue modulo p.

Proof. Since 2 is a primitive root modulo $p, \operatorname{ord}_{p}(2)=p-1$. Assume p is a quadratic residue modulo p. Then by $(1), 2^{(p-1) / 2} \equiv 1(\bmod p)$. But then

$$
\operatorname{ord}_{p}(2) \leq \frac{p-1}{2}<p-1=\operatorname{ord}_{p}(2)
$$

a contradiction. So 2 is a quadratic nonresidue modulo p.
Proposition 2. Let p be an odd prime. If 2 is a primitive root modulo p, then $p \equiv 3,5(\bmod 8)$.

[^0]Proof. By (2), 2 is a quadratic nonresidue modulo an odd prime p if and only if $p \equiv 3,5(\bmod 8)$. This fact together with Proposition 1 gives the desired result.

The converse of Proposition 2 does not hold in general. For example, it may be verified that 2 is not a primitive root modulo 43 .

A Fermat prime is defined to be a prime of the form $2^{2^{n}}+1$. A Mersenne prime is defined to be a prime of the form $2^{p}-1$ with p prime. Fermat primes greater than 5 are congruent to $1(\bmod 8)$, and Mersenne primes greater than 3 are congruent to $7(\bmod 8)$. Proposition 2 tells us that 2 is not a primitive root modulo p whenever p is a Fermat prime greater than 5 and whenever p is a Mersenne prime greater than 3.

Proposition 3. Let p be an odd prime. If $8 \mid p-1$ then 2 is not a primitive root modulo p.

Proof. If $8 \mid p-1$ then $p \equiv 1(\bmod 8)$, and so by Proposition 2,2 is not a primitive root modulo p.

If p is an odd prime, then $p-1$ is even, and $2 \mid p-1$. Proposition 3 tells us that if 2 is a primitive root modulo $p, 2$ or 4 appear in the prime factorization of $p-1$, but no higher power of 2 can appear.

Proposition 4. If p is a prime of the form $p=2 q+1$ for some odd prime q, then 2 is a primitive root modulo p if and only if $q \equiv 1,5(\bmod 8)$.

Proof. If 2 is a primitive root modulo p, then by Proposition $2, p \equiv 3,5(\bmod 8)$. We see at once that we must have $q \equiv 1,5(\bmod 8)$. Conversely, let $q \equiv 1,5$ $(\bmod 8)$. Now $\operatorname{ord}_{p}(2)$ is either q or $2 q$ (it cannot be 2 , since $p \geq 7$). Assume $\operatorname{ord}_{p}(2)=q$. Then $2^{q} \equiv 1(\bmod p)$, and so by $(1),\left(\frac{2}{p}\right)=1$. But by (2), this means that $p \equiv 1,7(\bmod 8)$. But since $q \equiv 1,5(\bmod 8)$, we must have $p \equiv 3(\bmod 8)$, a contradiction. So, $\operatorname{ord}_{p}(2)=2 q$, and 2 is a primitive root modulo p.

Proposition 5. If p is a prime of the form $p=4 q+1$ for some odd prime q, then 2 is a primitive root modulo p.

Proof. The smallest prime of this form is $p=13$, and it can be verified directly that 2 is a primitive root modulo 13 . For every other prime of this form, $\operatorname{ord}_{p}(2)$ is one of $q, 2 q$, or $4 q$. The cases $\operatorname{ord}_{p}(2)=q$ and $\operatorname{ord}_{p}(2)=2 q$ both imply that $2^{2 q} \equiv 1$ $(\bmod p)$. Then by $(1),\left(\frac{2}{p}\right)=1$, and so by (2), we must have $p \equiv 1,7(\bmod 8)$. But since p is of the given form, $p \equiv 5(\bmod 8)$, a contradiction. So, $\operatorname{ord}_{p}(2)=4 q$, and 2 is a primitive root modulo p.

Proposition 6. If p is a prime of the form $p=4 q^{k}+1$ for some odd prime q and some positive integer k, then $\operatorname{ord}_{p}(2)$ is one of $\left\{4 q, 4 q^{2}, \ldots, 4 q^{k}\right\}$.

Proof. As before, 13 is the smallest prime of this form, and $\operatorname{ord}_{13}(2)=12$, so the statement holds. For all other primes of this form, $\operatorname{ord}_{p}(2)$ is one of

$$
\left\{2 q, 4 q, 2 q^{2}, 4 q^{2}, \ldots, 2 q^{k}, 4 q^{k}\right\}
$$

Assume $\operatorname{ord}_{p}(2)=2 q^{\ell}$ for some $1 \leq \ell \leq k$. Then $2^{2 q^{\ell}} \equiv 1(\bmod p)$. Therefore, $2^{2 q^{k}} \equiv 1(\bmod p)$, and so $\left(\frac{2}{p}\right)=1$ by (1). By $(2), p \equiv 1,7(\bmod 8)$. But since
p is of the given form, $p \equiv 5(\bmod 8)$, a contradiction. So, $\operatorname{ord}_{p}(2) \neq 2 q^{\ell}$ for any $1 \leq \ell \leq k$, and therefore $\operatorname{ord}_{p}(2)$ is one of $\left\{4 q, 4 q^{2}, \ldots, 4 q^{k}\right\}$.

Dept. of Mathematics, Statistics, and Computer Science, The University of Illinois at Chicago, 850 S. Morgan St. Chicago, IL 60607-7045

Email address: rfuller@math.uic.edu
URL: http://www.math.uic.edu/~rfuller/

[^0]: Date: 20 October 2008.

